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A P-stable exponentially-fitted method of algebraic order eight for the approximate numer-
ical integration of the Schrödinger equation is developed in this paper. Since the method is
P-stable (i.e., its interval of periodicity is equal to (0,∞), large stepsizes for the numerical in-
tegration can be used. Based on this new method and on a sixth algebraic order exponentially-
fitted P-stable method developed by Simos and Williams [1], a new variable step method is
obtained. Numerical results presented for the coupled differential equations arising from the
Schrödinger equation show the efficiency of the developed method.
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1. Introduction

Much research has been done on the numerical solution of the radial Schrödinger
equation (see [2–9] and references therein). The scope of this work is the development
of an accurate and computationally efficient method that approximate the solution.

The radial Schrödinger equation can be written as

y′′(x) =
[
l(l + 1)

x2
+ V (x)− k2

]
y(x). (1)

A lot of problems in theoretical physics and chemistry, in chemical physics, in physical
chemistry, in astrophysics, in electronics and elsewere, are expressed with equations of
the above type (see, e.g., [10,11]). For the approximate solution of the problems of the
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previously mentioned type the development of suitable numerical methods is needed.
In (1) the function W(x) = l(l + 1)/x2 + V (x) denotes the effective potential, which
satisfies W(x) → 0 as x → ∞, k2 is a real number denoting the energy, l is a given
integer and V is a given function which denotes the potential. The boundary conditions
are

y(0) = 0 (2)

and a second boundary condition, for large values of x, determined by physical consid-
erations.

One of the most popular and well known methods for the numerical solution of (1)
is Numerov’s method. This is explained by the fact that Numerov’s method is of order
four, has a phase-lag of order four (i.e., of the same order with the linear symmetric four-
step sixth algebraic order methods) and much more larger interval of periodicity than the
linear symmetric four-step methods. High order numerical methods for the eigenvalue
problem of the radial Schrödinger equation have been produced for some special poten-
tials V (x) which are even functions (see, e.g., [12,13]). We note here that due to the fact
that the Schrödinger type equations have oscillating solutions it would be of much in-
terest to investigate the construction of high algebraic order P-stable numerical methods
for their efficient solution. This is because when we have a P-stable method, large step
sizes can be used without lost of accuracy.

The Runge–Kutta type or hybrid methods is an alternative approach for deriving
higher order methods. These type of methods has been proposed by Cash and Rap-
tis [14].

In [6] Simos has contructed low algebraic order (fourth algebraic order) P-stable
exponentially-fitted methods.

The purpose of this paper is the development of P-stable exponentially-fitted eighth
algebraic order hybrid method for the solution of (1). In section 2 the stability analysis of
two-step methods is presented. In section 3 an one-parameter family of eighth algebraic
order methods is presented and the development of eighth algebraic order exponentially-
fitted method is described. In section 4 an error control mechanism is described. An
application of the proposed variable step method to the coupled differential equations
arising from the Schrödinger equation is presented in section 5, to show the efficiency
of the new methods.

2. Stability analysis

Great interest has been noticed the past years in the numerical solution of special
second order periodic initial-value problems (see [15] and references therein)

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (3)
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In order to investigate the periodic stability properties of numerical methods for
solving the initial-value problem (3) Lambert and Watson [16] introduce the scalar test
equation

y′′ = −s2y (4)

and the interval of periodicity.
Based on the theory developed in [15], when a symmetric two-step method is ap-

plied to the scalar test equation (4), a difference equation of the form

yn+1 − 2C(H)yn + yn−1 = 0 (5)

is obtained, where H = wh, h is the step length, C(H) = B(H)/A(H), A(H) and
B(H) are polynomials in H and yn is the computed approximation to y(nh), n = 0, 1,
2, . . . .

The characteristic equation associated with (5) is

s2 − 2C(H)s + 1 = 0. (6)

Based on Coleman [15] when a symmetric two-step method is applied to the scalar
test equation y′′ = −w2y a difference equation (5) is obtained. The characteristic equa-
tion associated with (5) is given by (6). The roots of the characteristic equation (6) are
denoted as s1 and s2.

We have the following definitions.

Definition 1 [17,18].The method (5) is defined as unconditionally stable if |s1| � 1 and
|s2| � 1 for all values of wh.

Definition 2. Following Lambert and Watson [16] we say that the numerical method (5)
has an interval of periodicity (0,H 2

0 ), if, for all H 2 ∈ (0,H 2
0 ), s1 and s2 satisfy:

s1 = eiθ(H) and s2 = e−iθ(H), (7)

where θ(H) is a real function of H .

Definition 3. [16]. The method (5) is P-stable if its interval of periodicity is (0,∞).

And the following theorems:

Theorem 1. A method which has the characteristic equation (6), has an interval of
periodicity (0,H 2

0 ), if for all H 2 ∈ (0,H 2
0 ) |C(H)| < 1.

For the proof see [19].
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3. The new family of eighth algebraic order P-stable methods

We consider the following family of implicit methods:

ȳn+1/2= 1

2
(yn + yn+1)− h2

(
ay′′n +

(
1

8
− a

)
y′′n+1

)
+ O

(
h3), (8)

ȳn−1/2= 1

2
(yn + yn−1)− h2

(
ay′′n +

(
1

8
− a

)
y′′n−1

)
+ O

(
h3
)
, (9)

ỹn+1/2= 1

2
(yn + yn+1)− h2

96

(
y′′n+1 + 10ȳ′′n+1/2 + yn

)+ O
(
h5
)
, (10)

ỹn−1/2= 1

2
(yn + yn−1)− h2

96

(
y′′n−1 + 10ȳ′′n−1/2 + yn

)+ O
(
h5
)
, (11)

y̌n+1/2= 1

2
(yn + yn+1)− h2

1920

(
19y′′n+1 + 204ỹ′′n+1/2 + 14yn + 4ỹ′′n−1/2 − y′′n−1

)
+O

(
h7
)
, (12)

y̌n−1/2= g0(yn + yn−1)− h2

1920

(−y′′n+1 + 4ỹ′′n+1/2 + 14y′′n + 204ỹ′′n−1/2 + 19y′′n−1

)
+O

(
h7
)
, (13)

ȳn+1/4= 1

4
(3yn + yn+1)− h2

61440

(
241y′′n+1 + 4176ỹ′′n+1/2 + 1506y′′n − 184ỹ′′n−1/2

+ 21y′′n−1

)+ O
(
h7), (14)

ȳn−1/4= 1

4
(3yn + yn−1)− h2

61440

(
21y′′n+1 − 184ỹ′′n+1/2 + 1506y′′n + 4176ỹ′′n−1/2

+ 241y′′n−1

)+ O
(
h7), (15)

yn+1 = 2yn − yn−1 − h2
(
q0y
′′
n+1 + q1y

′′
n + q0y

′′
n−1 + q2

(
y̌′′n+1/2 + y̌′′n−1/2

)
+ q3

(
ȳ′′n+1/4 + ȳ′′n−1/4

))
, (16)

where y′′n = f (xn, yn), ȳ
′′
n±1/2 = f (xn±1/2, ȳ

′′
n±1/2), ȳ

′′
n±1/4 = f (xn±1/4, ȳ

′′
n±1/4), ỹ

′′
n±1/2=

f (xn±1/2, ỹ
′′
n±1/2), y̌

′′
n±1/2 = f (xn±1/2, y̌

′′
n±1/2). In order the above method to integrate

exactly any linear combination of the functions:{
1, x, x2, x3, x4, x5, x6, x7, exp(±vx)} (17)

we obtain the following system of equations:

2q0 + q1 + 2q2 + 2q3 = 1,
48q0 + 12q2 + 3q3 = 4,

3840q0 + 240q2 + 15q3 = 128,

w2

[
2q3 cosh

(
w

4

)
+ 2q0 cosh(w)+ 2q2 cosh

(
w

2

)
+ q1

]
= 2 cosh(w)− 2,

(18)

where w = vh.
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Solving the above system of equations for qi, i = 0, 1, 2, 3, we obtain:

q0 = 1

30

−30 cosh(w)+ 30 − 32w2 cosh( 1
4 w)+ 18w2 cosh( 1

2 w)+ 29w2

w2 (−64 cosh( 1
4 w)− cosh(w)+ 20 cosh( 1

2 w)+ 45)
,

q1 = − 1

15

416w2 cosh( 1
4 w)+ 29w2 cosh(w)+ 230w2 cosh( 1

2 w)

w2 (−64 cosh( 1
4 w)− cosh(w)+ 20 cosh( 1

2 w)+ 45)

− 1350 cosh(w)+ 1350

w2 (−64 cosh( 1
4 w)− cosh(w)+ 20 coshl( 1

2 w)+ 45)

q2 = − 1

15

256w2 cosh( 1
4 w)+ 9w2 cosh(w)− 115w2 − 300 cosh(w)+ 300

w2 (−64 cosh( 1
4 w)− cosh(w)+ 20 cosh( 1

2 w)+ 45)
,

q3 = 16

15

w2 cosh(w)+ 16w2 cosh( 1
2 w)+ 13w2 − 60 cosh(w)+ 60

w2 (−64 cosh( 1
4 w)− cosh(w)+ 20 cosh( 1

2 w)+ 45)
.

(19)

In order to avoid cancelations for small values of w, the following Taylor series
expansions can be used:

q0= 47
3780 − 31

453600 w2 + 257
1916006400 w

4 + 16691
22317642547200 w

6

− 121447
18364231581696000 w

8 + 65572457
4195859631785902080000 w

10

+ 213452429
2857212574860927880396800 w

12 − 100897105901
137146203593324538259046400000 w

14 + · · · , (20)

q1= 57
70 + 31

5040 w2 − 257
21288960 w

4 − 16691
247973806080 w

6 + 121447
204047017574400 w

8

− 65572457
46620662575398912000 w

10 − 213452429
31746806387343643115520 w

12

+ 100897105901
1523846706592494869544960000 w

14 + · · · , (21)

q2= 332
945 + 31

22680 w2 − 257
95800320 w

4 − 16691
1115882127360 w

6 + 121447
918211579084800 w

8

− 65572457
209792981589295104000 w

10 − 213452429
142860628743046394019840 w

12

+ 100897105901
6857310179666226912952320000 w

14 + · · · , (22)

q3=− 256
945 − 62

14175 w2 + 257
29937600 w

4 + 16691
348713164800 w

6 − 121447
286941118464000 w

8

+ 65572457
65560306746654720000 w

10 + 213452429
44643946482201998131200 w

12

− 100897105901
2142909431145695910297600000 w

14 + · · · . (23)

It is easy for one to see that when w = iφ, where i = √−1, then the method
integrates exactly any linear combination of the functions:{

1, x, x2, x3, x4, x5, x6, x7, cos(φx), sin(φx)
}
. (24)

Now we must calculate the free parameter a in order to obtain a P-stable method.
If we apply the new method (with coefficients obtained for the trigonometrically-fitted



182 J.V. Aguiar / A family of P-stable eighth algebraic order methods

method) to the scalar test equation (4) we get a difference equation of the form (5) and a
characteristic equation (6) with A(H) and B(H) given as follows.

A(H)= 61
960 q2 H

4 + 13
1920 q2 H

6 + 1129
30720 q3 H

4 + 499
589824 H

8 q3 +H 2 q0

+ 13
9216 H 8 q2 + 1+ q2 H

2 − 499
73728 H 8 q3 a − 13

1152 H 8 q2 a + 1

2
q3 H

2

+ 499
122880 q3 H

6, (25)

B(H)=− 3
4 q3 H

2 − 1
2 q2 H

2 − 1
2 H 2 q1 − 13

1920 q2 H
6 − 499

122880 q3 H
6 − 1751

30720 q3 H
4

+ 1− 59
960 q2 H

4 − 499
73728 H 8 q3 a − 13

1152 H 8 q2 a,

where H = sh.
So, we have

A(H)+ B(H)= 1
480 q2 H

4 − 311
15360 q3 H

4 + 499
589824 H

8 q3 +H 2 q0 + 13
9216 H 8 q2 + 2

+ 1
2 q2 H

2 − 499
36864 H 8 q3 a − 13

576 H 8 q2 a − 1
4 q3 H

2 − 1
2 H 2 q1, (26)

A(H)− B(H)= 1
8 q2 H

4 + 13
960 q2 H

6 + 3
32 q3 H

4 + 499
589824 H 8 q3 +H 2 q0 + 13

9216 H 8 q2

+ 3
2 q2 H

2 + 5
4 q3 H

2 + 499
61440 q3 H

6 + 1
2 H 2 q1. (27)

Substituting the coefficients of the method obtained above to the stability poly-
nomials (26) and (27) we observe that the polynomial A(H) − B(H) � 0 for all
H ∈ (0,∞). About polynomial A(H) + B(H) we observe that if we require that
the coefficient of H 8 to be greater or equal to [100 − the coefficient of H 4], then
A(H)+B(H) � 0 for all H ∈ (0,∞). Based on the above remark we find the following
value of a:

a =− 1
80

(−6635297537w2 + 155w2 cos(w)+ 39920w2 cos
(

1
2 w

)
+ 17694555136w2 cos

(
1
4 w

)− 71700 + 71700 cos(w)

+ 2211334656w2 cos
(

1
4 w
)4 − 13272445440w2 cos

(
1
4 w

)2

− 29583360 cos
(

1
4 w

)4 + 29583360 cos
(

1
4 w

)2)
/ (

14340 − 14340 cos(w)− 12467w2 + 13312w2 cos
(

1
4 w

)
− 7984w2 cos

(
1
2 w

)− 31w2 cos(w)
)
. (28)

The appropriate Taylor series expansion for the above coefficient is given by:

a =− 54428471
2320 + 16800258699

107648000 w2 − 321764515985367
439548313600000 w

4

+ 2385315279219883013
2121084342108160000000 w

6 − 14396843264530991601529
8660811585696038912000000000 w

8

+ 429909196780144892537035079
54653185430376283950284800000000000 w

10

− 17860240376025128796537573995407783
1488253284731164679871479509155840000000000000 w

12
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+ 44020665053241470066636359265331854143
3867077335045458304178052356590534656000000000000000 w

14 + · · · . (29)

Applying the Taylor series expansions of yn+1, yn and yn−1 about xn in (8)–(16)
we have the following result for the local truncation error (LTE) of the family of
exponentially-fitted methods (8)–(16):

LTE = − 31h10

232243200

(
y(10)
n − w2 y(8)

n

)
. (30)

For comparison purposes in table 1 we list the properties of two-step hybrid
exponentially-fitted method developed in this paper, together with the corresponding
properties of some similar two-step exponentially-fitted methods presented previously
in the literature. We present the properties of the methods: MI: Numerov’s method,
MII: derived by Raptis and Allison, MIII: derived by Raptis and Cash, MIV: method of
Thomas, Mitsou and Simos – case I, MV: method of Simos and Williams, MVI: method
of Simos and Williams [1] and MVII: the new developed method. We note that all the
methods presented in the table are implicit.

4. Error estimation – local error estimation

There are several methods in the literature for the estimation of the local truncation
error (LTE) for the integration of systems of initial-value problems (see, e.g., [20]).

The local error estimation technique in this work is based on an embedded pair of
integration methods and on the fact that when the algebraic order is minimal then the
approximation of the solution for the problems with an oscillatory or periodic solution
is better.

We have the following definition.

Definition 4. We define the local error estimate in the lower order solution yL
n+1 by the

quantity

LEE = ∣∣yH
n+1 − yL

n+1

∣∣, (31)

Table 1
Properties of some two-step exponentially-fitted methods. S = {H 2: H = qπ, q =
1, 2, . . .}, A.O. is the algebraic order of the method, inter. period is the interval of period-

icity of the method.

Method A.O. Inter. period Integrated exponential functions

MI 4 (0,6) 1, x, x2, x3, x4, x5

MII 4 (0,∞)− S 1, x, x2, x3, exp(±wx)

MIII 6 (0,∞)− S 1, x, x2, x3, x4, x5, exp(±wx)

MIV 4 (0,∞)− S 1, x, x2, x3, x4, x5, x6, x7, exp(±wx)

MV 4 (0,∞)− S 1, x, x2, x3, x4, x5, x6, x7, x8, x9, exp(±wx)

MVI 6 (0,∞) 1, x, x2, x3, x4, x5, exp(±wx)

MVII 8 (0,∞) 1, x, x2, x3, x4, x5, x6, x7, exp(±wx)
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where yH
n+1 is the solution obtained with P-stable method of algebraic order eight de-

veloped in this paper and yL
n+1 is the solution obtained with P-stable exponentially-fitted

method of sixth algebraic order developed by Simos and Williams [1].

Remark 1. Under the assumption that h is sufficiently small, the local error in yH
n+1 can

be neglected compared with that in yL
n+1.

If the local error of acc is requested and the step size of the integration used for the
nth step length is hn the estimated step size for the (n + 1)st step, which would give a
local error of acc, must be

hn+1 = hn

(
acc

LEE

)1/q

, (32)

where q is the algebraic order.
However, for ease of programming we have restricted all step changes to halving

and doubling. Thus, based on the procedure developed in [21], the step control procedure
which we have actually used is

If LEE < acc, hn+1 = 2hn;
If 100 acc > LEE � acc, hn+1 = hn;
If LEE � 100 acc, hn+1 = hn

2
and repeat the step.

(33)

We note, here, that the local error estimate is in the lower order solution yL
n+1.

However, if this error estimate is acceptable, i.e., less than acc, we adopt the widely used
procedure of performing local extrapolation. Thus, although we are actually controlling
an estimate of the local error in lower order solution yL

n+1, it is the higher order solution
yH
n+1 which we actually accept at each point.

5. Numerical illustrations

In the present section we will illustrate the efficiency of the described in section 4
variable-step technique by applying it to the numerical solution of coupled differential
equations arising from the Schrödinger equation.

5.1. Coupled differential equations

The close-coupled differential equations of the Schrödinger type may be written in
the form [

d2

dx2
+ k2

i −
li(li + 1)

x2
− Vii

]
yij =

N∑
m=1

Vimymj (34)

for 1 � i � N and m �= i.
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We have investigated the case in which all channels are open. So, the boundary
conditions are (see for details [21]):

yij = 0 at x = 0, (35)

yij ∼ kixjli (kix)δij +
(
ki

kj

)1/2

Kij kixnli(kix), (36)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.
The methods here have much larger intervals of periodicity than Numerov’s method
(and many other traditional difference methods). This property is essential to avoid nu-
merical instabilities. Such methods are thus very suitable for problems involving closed
channels.

Using the detailed analysis developed in [21] and defining a matrix K ′ and diagonal
matrices M, N by:

K ′ij =
(
ki

kj

)1/2

Kij , Mij = kixjli (kix)δij , Nij = kixnli (kix)δij ,

we find that the asymptotic condition (36) may be written:

y ∼ M +NK ′. (37)

The iterative Numerov method of Allison [21] is well known for problems of this type.
An example of a problem that can be transformed to a set of close-coupled differen-

tial equations of the Schrödinger type is the rotational excitation of a diatomic molecule
by neutral particle impact. Denoting, as in [21], the entrance channel by the quan-
tum numbers by (j, l), the exit channels by (j ′, l′), and the total angular momentum by
J = j + l = j ′ + l′, we find that

[
d2

dx2
+ k2

j ′j −
l′(l + 1)

x2

]
y
Jjl

j ′l′ (x) =
2µ

h̄2

∑
j ′′

∑
l′′

〈
j ′l′; J ∣∣V ∣∣j ′′l′′; J 〉yJjl

j ′′ l′′(x), (38)

where

kj ′j = 2µ

h̄2

[
E + h̄2

2I

{
j
(
j + 1

)− j ′
(
j ′ + 1

)}]
, (39)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the
moment of inertia of the rotator, and µ is the reduced mass of the system.

Following the analysis of [21], the potential V may be written

V
(
x, k̂j ′j · k̂jj

) = V0(x)P0
(
k̂j ′j · k̂jj

)+ V2(x)P2
(
k̂j ′j · k̂jj

)
, (40)

and the coupling matrix element is
〈
j ′l′; J ∣∣V ∣∣j ′′l′′; J 〉 = δj ′j ′′δl′l′′V0(x)− f2

(
j ′l′, j ′′l′′; J )V2(x), (41)
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where the f2 coefficients can be obtained from formulae given by Berstein et al. [22],
k̂j ′j is a unit vector parallel to the wave vector kj ′j and Pi, i = 0, 2, are Legendre poly-
nomials (see for details [22]). The boundary conditions may then be written (see [21])

y
Jjl

j ′l′ (x) = 0 at x = 0, (42)

y
Jjl

j ′l′ (x) ∼ δjj ′δll′ exp

[
−i

(
kjjx − lπ

2

)]
−
(
ki

kj

)1/2

SJ
(
j l; j ′l′)

× exp

[
i

(
kj ′jx − l′π

2

)]
, as x →∞, (43)

where the scattering matrix S is related to the K matrix of (36) by the relation

S = (I + iK)(I − iK)−1. (44)

The calculation of the cross sections for rotational excitation of molecular hydrogen
by the impact of various heavy particles requires a numerical method for step-by-step
integration from the initial value to the matching points.

In our numerical test, we choose the S matrix given by the following parameters

2µ

h̄2 = 1000.0,
µ

I
= 2.351, E = 1.1,

V0(x) = 1

x12
− 2

x6
, V2(x) = 0.2283V0(x).

Following [21], we take J = 6 and consider excitation of the rotator from the j = 0 state
to levels up to j ′ = 2, 4 and 6 giving sets of four, nine and sixteen coupled differential
equations, respectively. Following Berstein [23] and Allison [21] a reduction of the
interval [0,∞) to [x0,∞] is made. The wave functions are then zero in this region and,
consequently, the boundary condition (42) may be written

y
Jjl

j ′ l′ (x0) = 0. (45)

For the numerical solution we have used

(i) the Iterative Numerov method of Allison [21],

(ii) the variable-step method of Raptis and Cash [24],

(iii) the variable-step method of Simos [25],

(iv) the variable-step exponentially-fitted method of Simos and Williams [26],

(v) the explicit variable-step method developed in [27],

(vi) the variable-step Bessel and Neumann fitted method developed in [28],

(vii) the variable-step fourth algebraic order method developed in [3],

(viii) the variable-step sixth algebraic order method developed in [3],
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(ix) the method RKN12 described in [29, p. 298]. This method is based on the
Runge–Kutta–Nyström method of order 12(10) developed by Dormand et al.
[30], and

(x) the new variable-step P-stable exponentially-fitted method developed in this
paper.

In table 2, we present the real computation time required by these methods to calcu-
late the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled differential

Table 2
RTC (real time of computation (in seconds)) to calculate |S|2 for the variable-step methods (i)–(x).

acc = 10−6, hmax is the maximum step size, MErr is the maximum absolute error.

Method N hmax RTC MErr

Iterative Numerov [21] 4 0.014 3.25 1.2 · 10−3

9 0.014 23.51 5.7 · 10−2

16 0.014 99.15 6.8 · 10−1

Variable-step method of Raptis and Cash [24] 4 0.056 1.55 8.9 · 10−4

9 0.056 8.43 7.4 · 10−3

16 0.056 43.32 8.6 · 10−2

Variable-step method of Simos [25] 4 0.056 1.05 8.0 · 10−4

9 0.056 5.25 6.7 · 10−3

16 0.056 27.15 8.1 · 10−2

Variable-step method of Simos and Williams [26] 4 0.448 0.24 5.2 · 10−4

9 0.448 0.96 4.4 · 10−3

16 0.448 5.04 6.4 · 10−2

Variable-step method of Simos [27] 4 0.448 0.27 5.3 · 10−4

9 0.448 1.48 4.5 · 10−3

16 0.448 6.31 6.5 · 10−2

Variable-step method of Simos and Williams [28] 4 0.448 0.18 4.5 · 10−4

9 0.448 0.92 3.8 · 10−3

16 0.224 5.32 4.2 · 10−2

Variable-step methods of order four of Avdelas and Simos [3] 4 0.112 1.37 8.4 · 10−4

9 0.112 7.72 7.0 · 10−3

16 0.112 33.11 8.4 · 10−2

Variable-step methods of order six of Avdelas and Simos [3] 4 0.224 1.03 8.1 · 10−4

9 0.224 6.91 6.7 · 10−3

16 0.224 14.05 7.1 · 10−2

RKN12 4 0.224 0.78 9.6 · 10−5

9 0.224 4.93 9.8 · 10−4

16 0.224 13.25 9.5 · 10−3

Variable-step P-stable exponentially-fitted 4 0.896 0.03 2.1 · 10−8

method developed in this paper 9 0.896 0.21 9.2 · 10−8

16 0.896 1.72 3.4 · 10−7
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equations. In the same table the maximum absolute error is also presented. In table 2, N
indicates the number of equations of the set of coupled differential equations.

6. Remarks and conclusion

In this paper a variable-step technique for the numerical solution of the Schrödinger
equation and related problems is described.

From the results presented above we arrive to the following conclusions.

1. The variable-step fourth and sixth algebraic order methods of Avdelas and
Simos [3] are more efficient (more accurate and more rapid) than the Iterative
Numerov of Allison [21], the variable-step method of Raptis and Cash [24] and
the variable-step method of Simos [25].

2. The method of Simos and Williams [26] and the method of Simos [27] are more
efficient than the Iterative Numerov of Allison [21], the variable-step method of
Raptis and Cash [24], the variable-step method of Simos [25], the variable-step
fourth and sixth algebraic order methods of Avdelas and Simos [3]. The method
of Simos and Williams [28] is more efficient than the method of Simos [27].

3. Finally, the new variable-step P-stable exponentially-fitted technique is the most
efficient one.
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